{ bidder: 'openx', params: { unit: '539971066', delDomain: 'idm-d.openx.net' }}, { bidder: 'sovrn', params: { tagid: '346688' }}, It is also the counting number of the rational numbers. ga('require', 'displayfeatures'); iasLog("exclusion label : resp"); Learn more. { bidder: 'criteo', params: { networkId: 7100, publisherSubId: 'cdo_topslot' }}, that ∞ usually stands for. "authorizationFallbackResponse": { The Infinity enchantment is available in … ga('set', 'dimension3', "default"); googletag.pubads().setTargeting("cdo_t", "size-and-quantity"); { bidder: 'ix', params: { siteId: '195464', size: [300, 600] }}, { bidder: 'onemobile', params: { dcn: '8a9690ab01717182962182bb50ce0007', pos: 'cdo_btmslot_mobile_flex' }}, { bidder: 'appnexus', params: { placementId: '11654156' }}, Mathematical infinities occur, for instance, as the number of points on a continuous line. { bidder: 'ix', params: { siteId: '195464', size: [120, 600] }}, Infinity is the idea of something that has no end. pbjsCfg = { { bidder: 'criteo', params: { networkId: 7100, publisherSubId: 'cdo_rightslot' }}, name: "_pubcid", {code: 'ad_btmslot_a', pubstack: { adUnitName: 'cdo_btmslot', adUnitPath: '/2863368/btmslot' }, mediaTypes: { banner: { sizes: [[300, 250], [320, 50], [300, 50]] } }, { bidder: 'onemobile', params: { dcn: '8a9690ab01717182962182bb50ce0007', pos: 'cdo_topslot_mobile_flex' }}, addPrebidAdUnits(pbAdUnits); { bidder: 'openx', params: { unit: '539971080', delDomain: 'idm-d.openx.net' }}, { bidder: 'criteo', params: { networkId: 7100, publisherSubId: 'cdo_btmslot' }}, ga('set', 'dimension2', "entryex"); { bidder: 'triplelift', params: { inventoryCode: 'Cambridge_SR' }}, dfpSlots['houseslot_b'] = googletag.defineSlot('/2863368/houseslot', [], 'ad_houseslot_b').defineSizeMapping(mapping_houseslot_b).setTargeting('sri', '0').setTargeting('vp', 'btm').setTargeting('hp', 'center').setCategoryExclusion('house').addService(googletag.pubads()); It's something that characterises things that never end. { bidder: 'ix', params: { siteId: '555365', size: [120, 600] }}, dfpSlots['btmslot_a'] = googletag.defineSlot('/2863368/btmslot', [[300, 250], 'fluid'], 'ad_btmslot_a').defineSizeMapping(mapping_btmslot_a).setTargeting('sri', '0').setTargeting('vp', 'btm').setTargeting('hp', 'center').addService(googletag.pubads()); 'min': 0, 'min': 31, something that is infinite. { bidder: 'openx', params: { unit: '539971080', delDomain: 'idm-d.openx.net' }}, { bidder: 'sovrn', params: { tagid: '387232' }}, { bidder: 'pubmatic', params: { publisherId: '158679', adSlot: 'cdo_rightslot' }}]}, { bidder: 'appnexus', params: { placementId: '11654208' }}, { bidder: 'pubmatic', params: { publisherId: '158679', adSlot: 'cdo_leftslot' }}]}, partner: "uarus31" Just think "endless", or "boundless". { bidder: 'appnexus', params: { placementId: '19042093' }}, ga('send', 'pageview'); Add infinity to one of your lists below, or create a new one. A never-ending Universe, or a never-ending list, like the list of natural numbers 1, 2, 3, 4, .... . bids: [{ bidder: 'rubicon', params: { accountId: '17282', siteId: '162036', zoneId: '776140', position: 'atf' }}, { bidder: 'ix', params: { siteId: '195451', size: [300, 250] }}, { bidder: 'ix', params: { siteId: '194852', size: [300, 250] }}, |Algebra|, Cantor-Bernstein-Schroeder theorem, a Second Proof, Intermediate value Theorem - Bolzano Theorem.