%���� Assume therefore that x 6= 0 and y 6= 0. ��6�aHkW!��܋� \�qُ�䟌sm����ow.�`!�ĔTDV�ESkh�*���e���yIy|��u������,.���U\To��Ȫ�s���:�iCv;sG�̀~�^W��Pp�:P>g�Dq2b\5 �;D ٶ���/�s!��B'H����\d-�s��fI�Ba��m0S�p�pqt��'�H6a�l�j}�ZA���+�����2A
�H�=��=�ƤRO@�$���CI���FT�M��dW��&֜P�}�
���,i�m�^ �r����a��G27��ьi��~�9?��>gI�ä�d�p҆ Then ε = 1 2d(x,y) is positive, so there exist integers N1,N2 such that d(x n,x)< ε for all n ≥ N1, d(x n,y)< ε for all n ≥ N2. endobj The set of real numbers R with the function d(x;y) = jx yjis a metric space. Therefore our de nition of a complete metric space applies to normed vector spaces: an n.v.s. F+��G1+9�yQ6�j �s����m�s)�eY�w!h��Ex�����r��Fdg��z.��\��e�y��ZWm� �f����V�%�YM�hZ��ۺ��e�A�;Xǁ�fY�����ž.���i�����-�����*۞ѓ�Rޭ�MIc�U�ZUSS㢾�e)��kCi&��Hf�l�W0���:��5,E��5�v��$
�xn�%������ [���%�xjR�JM�S3Uq��n�QK-�������H�N;s�H������7�)�H�e�'�WL�L��Hi5��O~I��k!������O�^���{�'8E:���t2%��y�~�or�(F� �m�=�F҈^�xw1%R%S�Ɔ�I�Z�����)F�J��bHR:i��+,Y���T�`L[��4DŽU��)�4�V��,�F���T! In other words, no sequence may converge to two different limits. Examples of metric spaces. �%��)�V1�����hj�J3�c��? �f���~��=��p�˰�(��ƽ׳�G�:����$������G�9q�6F� �Hu�@��[�^�/d�;P-��Ğ [V�; 8$G'T���EI���`��R)
�~����.9yHr�S ɩ��侻��B|��+J�q��Xsn��x��v�݊>��1��k��ў�M��ܠ���� *{PS���_Ӏ}H_�J.��iC),�� c���H�Y!a x��َ���}�B�'�ðor~ȱIl� � �~�J��)��������橖4cO�$/R���uuUu1Y�-�ş�������ퟘY0���v���nj��I�8�lq�Z|��jms}#�������m],��~�/����o�Z�$Β�!�&D��lq�U,DF�n7���7\��$�\Ȩ(�y�uU�KK��Ə]V���[�Tk�����xY���g������r��f�x�/��lh��ęJ���a������6���b���?�����%5ڦ�t�"���,*��n��p��-���р#�Ȋ��u�Mh�Lé5b�y�A\�� Proof. Proof. ��]�3�G)b�q;�S��R����2}bl~������AK�:�`~M�M0��U]4U}v�#ثA�h@B�˼�DХj�����l�1+��u�1�Yݝ�*��u�T�;�S�C�QP �k���=Y�]T�
����e���2'��(�ϙ�����q�
���H�� uv==���"�0�G�����~a�5~l���}G.F����,j���Lv\��˹h��7���hƞt�.�ʄ���M���Z
l���u�p��c-@y����q� j�"�ˑ�Y��jU�[�/
D�=�J;LŎ�q�
pYLJ�a9�-:>+B(H��A��EW��YQ��q��Ǒ��� /Filter /FlateDecode 2. Assume that is not sequentially compact. /Filter /FlateDecode [΄�L 3. is complete and totally bounded. /Length 3785 Metrics on spaces of functions These metrics are important for many of the applications in analysis. Discrete metric space is often used as (extremely useful) counterexamples to illustrate certain concepts. /Length 2734 Euclidean Space and Metric Spaces 8.1 Structures on Euclidean Space ... EUCLIDEAN SPACE AND METRIC SPACES Examples 8.1.2. )O"�cd%Q���D��Z�Hdz³. ���ot&����C@�!��.om����aU:@^�v����Mh��M���Yd�W7�a+�*���UPxh���K=r�!o���O-��R�;�1�yq�Ct5m^��u]���,��h�H����_��Y�| �vEӈ��M�ԭhC�[Vum��ܩ�UQށX ��`
�':v�udPۺ���ӟ�4���#5�� �(,""M��6�.z͢��x��d��}�v�obwL��L��Yo������+�S���o����Ǐ��� Recall that every normed vector space is a metric space, with the metric d(x;x0) = kx x0k. Example 1. %PDF-1.5 x��\I��6��W���. (i) V is a R -vector space: If either x = 0 or y = 0 the inequality is obvious. Proof: Exercise. Then we can de ne In most cases, the proofs In most of the examples the conditions (1) and (2) of De nition 1.1 are easy to verify, so we mention these conditions only if there is some di culty in establishing them. Suppose {x n} is a convergent sequence which converges to two different limits x 6= y. >> stream Let C[0, 1] be the set of all continuous R-valued functions on the interval [0, 1]. Turns out, these three definitions are essentially equivalent. 1. More A metric space is a set Xtogether with a metric don it, and we will use the notation (X;d) for a metric space. /Filter /FlateDecode 20 0 obj << Often, if the metric dis clear from context, we will simply denote the metric space (X;d) by Xitself. %PDF-1.5 1. is compact. Metric Spaces A metric space is a set X that has a notion of the distance d(x,y) between every pair of points x,y ∈ X. Theorem. 5 0 obj << 3 0 obj << We now give examples of metric spaces. x��ZKs7��WpO�M������M\vT�j�*�aL��)��"ɿ~�ј�@Y^˱{���F�я�{��ӣo��� ��0'��*��g���o�/'�O_�ڻ�x�dv�+v|�������'��F��4q�e��?����~���cag�yk5�e5�n���9�h�''/~��'��2;=y���I��r��*?